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Abstract. We calculate the dynamical response of a group of non-interacting magnetic grains dispersed in
a medium that imposes on them an uniaxial anisotropy. Numerical results are obtained for a collection of
grains that has its volume distribution given by a Gaussian function centered in the average volume V0, and
has a width σV0. We assume that the only effect of the medium on the particles is the anisotropy imposed
on the grains to study the influence of the volume distribution (σ and V0) on the effective permeability.
The results are analyzed through the calculation of numerical values for the components of the magnetic
permeability and also by the analysis of the combined effect of the external dc magnetic field and the width
of the volume distribution on the skin depth.

PACS. 75.40.Gb Dynamic properties (dynamical susceptibility, static susceptibility, spin waves,
spin diffusion, dynamic scaling, etc.) – 75.50.Kj Amorphous and nanocrystalline magnetic materials;
quasicrystals – 75.50.Tt Fine-particle systems; nanocrystalline materials

1 Introduction

The recent development of new technologies makes possi-
ble to synthesize small size particles tailored to fit different
needs [1–9]. Despite the effort of a considerable number of
researchers, many of the atypical properties observed in
these systems are still waiting for physical justifications.
It should be remarked that many of the features attributed
to these particles are observed when they are forming an
arrangement of grains. This fact suggests that (at least)
some of the properties observed are not only due to at-
tributes of single particles, but instead, they are features
resulting of the collective behavior. Therefore, it is impor-
tant to understand the physical properties of very small
size particles, but it is also equally important (specially
from the application standpoint) to understand the col-
lective behavior of systems composed by a large number
of these particles. The aim of this paper is to give a simple
and useful procedure to obtain a description of physical
characteristics of these systems.

The procedure described here may be used to obtain
effective parameters to describe a large variety of systems
and the main restriction is that the property under investi-
gation do not distinguish the different parts of the system.
In other words, the result obtained for the observable is
reliable if it is not the response of a small number of par-
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ticles. For example, this procedure should give a good de-
scription of the optical characteristics of the system if we
are analyzing results obtained for radiation with a wave-
length much larger than the cubic root of the average vol-
ume of the particles, but it should fail if the wavelength
of the radiation is comparable with the diameter of the
particles.

Our approach to study these systems is similar to one
made by Skeff Neto et al. [10] many years ago. We propose
that any physical property of these systems is the averaged
value of the contributions of the individual particles. In the
following we illustrate the use of this assumption through
the study of some physical behavior of a collection of non-
interacting magnetic grains.

To do that we assume that if the number of particles
with volume between V and V + dV is proportional to
f(V )dV , any physical property observed (Oob) in these
systems is the average value of the property of the indi-
vidual particles (OP (V )) i.e., Oob =

∫
OP (V )f(V )dV .

To analyze the consequences of these assumptions, we
will calculate the magnetic susceptibility of a collection of
non interacting particles. We will obtain numerical results
considering that the f(V ) is given by

f(V ) =
1
Ω

exp[−(V − V0)2/2(σV0)2] (1)

where Ω is the normalization factor (
∫

f(V )dV = 1) and σ
measures the width of the gaussian distribution centered
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at the average volume V0. We assume the grains are in
a medium that imposes a preferential direction for their
magnetic moment. We will take into account this effect
by considering that each grain feels an uniaxial anisotropy
along the direction θ̂K . The anisotropy constant (HA) will
measure the energy necessary to rotate the magnetic mo-
ment of the grain by π starting from the θ̂K direction.
Certainly real systems may have different interactions and
consequently have a different dependence of the energy on
the volume. (Usually the interaction of two systems de-
pends on the characteristics of both systems as well as on
the environment.) We chose one that makes the anisotropy
energy proportional to the square of the component of the
magnetic moment along θ̂K and then it is proportional to
the square of the volume of the grain. This choice is useful
to illustrate the method and the result for different sys-
tems should be quantitatively different but should follow
the general behavior depicted here.

If we assume that, in addition to the assumptions
above, the system is in presence of a static magnetic field
H0ẑ, the energy of a grain with a volume V is given by:

E(V ) = − HA

2M0
(M (V ).θ̂K)2 − M (V ).(H0 + h(t)) (2)

where M0 = |M0| is the absolute value of the magnetic
moment M0 of a grain with the average volume V0, HA

measures the strain to rotate the magnetic moment M (V )
of the grain that has a volume V from its anisotropy axis.
The last term is the Zeeman energy, supplemented by the
coupling of the magnetic moments to the externally ap-
plied field h(t) = (x̂hx + ŷhy + ẑhz) exp(−iωt) .

It should be remarked that if the static magnetic field
H0ẑ is not parallel to the anisotropy direction θ̂K , the
equilibrium configuration will be the result of a competi-
tion between the Zeeman and anisotropy energies. Assum-
ing that M (V ) is proportional to V , the anisotropy has
a quadratic dependence on the volume while the depen-
dence of the Zeeman energy is linear. The result of this
competition is that the grains with volume smaller than a
critical value will be aligned with the field while the rest
will be in some direction between H0 and θ̂K . As a con-
sequence, the distribution of volume of the particles leads
to a distribution of the resonance frequency which should
be controlled by the form of f(V ).

2 The magnetic permeability

The magnetic susceptibility of an individual grain of vol-
ume V and magnetic moment M(V ) can be obtained from
its equation of motion

1
γ

dM(V )
dt

= M(V ) × Heff (3)

where γ is the gyromagnetic factor and Heff is the effec-
tive field felt by M(V ) which is obtained from the equa-
tion (2) and given by

Heff =
HA

M0
[M (V ).θ̂K ]θ̂K + H0 + h(t). (4)

At this point we should say that we are considering that
the internal energy of the grains is constant and the only
modification induced by the environment (medium and ex-
ternal field) is on the direction of the magnetic moments.

We write M(V ) as a sum of its static value [M(V )]0
(the value of M(V ) that gives the minimum to E(V )) and
its fluctuation η(t) to rewrite the equation (3) as:

1
γ

dη(t)
dt

= η(t) ×
{

HAM0
K(V )

M0
θ̂K + H0

}

+ [M (V )]0 ×
{

h(t) +
HA

M0
ηK(t)θ̂K

}

. (5)

To make the equation (5) simpler we have defined ηK(t) =
η(t).θ̂K and M0

K(V ) = [M (V )]0.θ̂K . Also, in equation (5)
we have omitted the nonlinear terms as well as the term
that determines the equilibrium configuration M(V )]0 ×
{HA

M0
M0

K(V )θ̂K + H0ẑ} which is zero. This later condition
leads to

H0 sin θ + HA

[

v(sin θ cos θ cos 2θK)−
sin 2θK

2
(cos2 θ − sin2 θ))

]

= 0 (6)

which allow us to obtain the equilibrium position of M(V )
(the angle θ between M(V ) and the z-axis). In equa-
tion (6) θK is the angle between θ̂K and the z-axis, we
wrote M(V ) = M0V/V0 and we defined the dimensionless
parameter v = V/V0. A bit of algebra allow us to show
that the equilibrium positions of the magnetic moments
of the grains are given by the solution of the polynomial
equation

v sin 2θKξ4 + 4
(

v cos 2θK − H0

HA

)

ξ3 − 6v sin 2θKξ2

− 4
(

v cos θK +
H0

HA

)

ξ + v sin 2θK = 0. (7)

with ξ = tg(θ/2).
We assume η(t) = (x̂ηx + ŷηy + ẑηz) exp(−iωt) to ob-

tain, from equation (5):

−iωηx/γ = [H0+HAv cos(θK−θ) cos θK ]ηy−M0v cos θhy

−iωηy/γ = −[H0 + HAv cos(θK − θ) cos θK ]ηx

+HAv cos(θK − θ) sin θKηz + M0v cos θhx

−M0v sin θhz

−iωηz/γ = −HAv cos(θK − θ) sin θKηy + M0v sin θhy.(8)

After some algebraic manipulations these equations can
be rewritten to read:

⎛

⎝
ηx

ηy

ηz

⎞

⎠ = ∆

⎛

⎜
⎜
⎝

ω2
xx

M0
iωv cos θ −ω2

xz

−iωv cos θ
(ω2

xx+ω2
zz)

M0
iωv sin θ

−ω2
xz

M0
iωv sin θ

ω2
zz

M0

⎞

⎟
⎟
⎠

⎛

⎝
hx

hy

hz

⎞

⎠

(9)
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where

∆ =
M0

Ω2
0 − ω2

,

ω2
xx = γ2M0v cos θ[H0 + HAv cos θK cos(θk − θ)],

ω2
zz = γ2v2M0HA sin θ sin θK cos(θK − θ),

ω2
xz = γ2v2M0HA cos θ sin θK cos(θK − θ),

and
Ω2

0 = γ2[H2
Av2 cos2(θK − θ) +

2H0HAv cos θK cos(θK − θ) + H2
0 ]. (10)

Therefore, from equation (9) we can write ηi(V ) =∑
j χij(V )hj where χij(V ) is the correspondent element

of the 3× 3 matrix displayed in the right hand side of the
equation (9).

Then, we may define the effective permeability tensor
〈µij 〉 = δij + 4π〈χij〉 where the effective magnetic suscep-
tibility 〈χij〉 is given by:

〈χij〉 =
∫ ∞

0

χij(V )f(V )dV . (11)

With the magnetic permeability on hand one may es-
timate several physical properties. We chose the mag-
netoimpedance to illustrate our calculation. This prop-
erty, in the low frequency limit, is quite well described by
the skin depth model [11,12] which has a simple depen-
dence on the magnetic permeability. In the next section
we present the calculation of the skin depth for the system
described above.

3 The skin depth

As mentioned before the approach presented here should
be reliable to analyze physical properties that do not
“see” individual parts of the system. Instead, they are
the response of a great number of particles. Therefore, in
the limit where the approach is reliable (low frequency
limit), we may neglect the displacement current to write
Maxwell’s equations as:

∇× H =
4π

ρc
E (12)

∇× E = −1
c

∂B

∂t
= i

ω

c
µ.H (13)

where ρ is the conductivity, ω is the frequency of the ac
field. Therefore, in this limit we have:

⎛

⎜
⎝

iρ(k⊥c)2

4πω + µxx µxy µxz

µyx µyy µyz

µzx µzy
iρ(k⊥c)2

4πω + µzz

⎞

⎟
⎠

⎛

⎝
hx

hy

hz

⎞

⎠ = 0 (14)

where k⊥ is the component of the wavenumber perpendic-
ular to the surface of the material. The system of equations
above has a non-trivial solution if

k4
⊥ − i

4πω

ρc2
Bk2

⊥ −
[
4πω

ρc2

]2

C = 0, (15)

where B = µxx + µzz − |µyz |2+|µxy|2
µyy

and C = µxxµzz −
|µxz|2 −µxx|µyz |2+µzz|µxy|2+2µxyµxzµyz

µyy
. We define k⊥ = β+

i/δ, where δ is the skin depth which after some algebra
can be written as:

δ = 2
(

−2�(k2
⊥) + 2

√
�(k2

⊥)2 + �(k2
⊥)2

)−1/2

(16)

with

�(k2
⊥) =

{
0, if B2 > 4C

2πω
√

B2−4C
ρc2 , if B2 < 4C

(17)

and

�(k2
⊥) =

{
2πω[B+

√
B2−4C]

ρc2 , if B2 > 4C
2πωB
ρc2 , if B2 < 4C.

(18)

Since the magnetoimpedance is proportional to 1/δ, in the
following section we analyze the behavior of this quan-
tity with the width of the grain volume distribution and
strength of the static external field. Our interest is to
study the combined effects of the width of the grain vol-
ume distribution and strength of the static external field.

4 Numerical results

The calculations presented in the previous sections can be
used to obtain numerical results for any geometry. How-
ever, to have more precise information of the influence of
the combined effect of the external dc field and the distri-
bution of the volume of the grains on the physical property
under investigation, in the following we consider the ex-
ternal magnetic field parallel to the anisotropy direction.

All quantities are depicted in dimensionless or arbi-
trary units since our goal is to show the relative modifica-
tion of the property due to the collective behavior.

In Figures 1 to 6 we display the behavior of the in-
verse of the skin depth and one of the components of the
magnetic permeability tensor (we chose µxx ) for different
values of the magnetic field and width of the grain volume
distribution. For the sake of comparison we also plot in
each figure (dashed curve) the behavior of the same prop-
erty for a homogeneous material with the same physical
parameters.

From Figures 1–3 (all of them are for σ = 0.2) one can
see that the presence of an external dc magnetic field mod-
ifies the frequency region where the magnetoimpedance
has a singular behavior (as mentioned above, the mag-
netoimpedance is proportional to the inverse of the skin
depth). Note that the region where is observed the biggest
variation of the magnetoimpedance (which is due to the
behavior of the product of the µij elements that appear
in B and C) moves to higher frequency when the inten-
sity of the dc magnetic field is increased. The fluctuation
of the magnetoimpedance around the averaged resonance
frequency Ω0(V0) is almost the same for all the fields inves-
tigated. The field dependence of the position of the region
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Fig. 1. Inverse of the skin depth for H0 = 0 and σ = 0.2. The
dashed line shows the result for a homogeneous system with
the same physical parameters.
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Fig. 2. The same of Figure 1 for H0 = 0.1HA.
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Fig. 3. The same of Figure 1 for H0 = HA.

where the abrupt behavior of 1/δ occurs is the only re-
markable feature observed in these figures. It should be
noted that in all of them the qualitative behavior of the
magnetoimpedance is preserved.

However, when we compare the results depicted in Fig-
ure 2 (H0 = 0.1HA and σ = 0.2) with those in Figure 4
(H0 = 0.1HA and σ = 0.5) we can see that the width of
the grain volume distribution affects not only the position
but also the form of the magnetoimpedance in the fre-
quency region where it displays a singular behavior. It is
also observed notable modifications in the shape of curves
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Fig. 4. Behavior of the inverse of the skin depth for a magnetic
field H0 = 0.1HA and σ = 0.5. The influence of the width of
the volume distribution on the physical property can be seen
when this figure is compared with Figure 2.
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Fig. 5. The component µxx of the permeability tensor for
H0 = 0.1HA and σ = 0.2.
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Fig. 6. The same of Figure 5 for σ = 0.5. Compare with the
result for σ = 0.2 to see the effect of the width of the volume
distribution.

when it is compared with the one obtained for homoge-
neous system. Similar results can also be seen in Figures 5
and 6 where we show the frequency dependence of µxx for
different values of the external dc magnetic field. For ho-
mogeneous systems we only observe a very pronounced
modification of the magnetic permeability near the reso-
nance frequency. However, for a finite value of the grain
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volume distribution width (σ = 0.2, for example) makes
µxx smoother in the neighborhood of the resonance fre-
quency. By further increasing σ leads to an almost flat
µxx curve, corresponding to the superposition of resonance
frequencies Ω0(V ) distributed in a wide interval.

5 Final comments and conclusions

The results presented in this paper suggest that the width
of the grain volume distribution can be used as an addi-
tional parameter to obtain a desired property of a sample
composed by a collection of nanoparticles. It should be
remarked that, if the material have its intrinsical physical
properties with different dependence on the volume, the
volume distribution of the particles will be of fundamental
importance to have the sample with a specific property. In
other words, specially in the case where the dependence
on the volume of the physical properties of the grains is
nonlinear, the volume distribution will play a fundamental
to grow samples with a specific characteristic.

However, inter-particles interaction will be always
present in these systems and have to be take into account
for high density. This interaction should modify the results
presented here and the main effect should be to smooth
the response of the system to the external driving force
since it should work as the viscosity in a fluid.

In this paper we are not aware of some specific material
or experiment, but we hope this theoretical work encour-
ages experimentalist to make experiments to confirm the
results predicted here.
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